Flow interactions lead to orderly formations of flapping wings in forward flight
نویسندگان
چکیده
Classic models of fish schools and flying formations of birds are built on the hypothesis that the preferred locations of an individual are determined by the flow left by its upstream neighbor. Lighthill posited that arrangements may in fact emerge passively from hydroor aerodynamic interactions, drawing an analogy to the formation of crystals by intermolecular forces. Here, we carry out physical experiments aimed at testing the Lighthill conjecture and find that self-propelled flapping wings spontaneously assume one of multiple arrangements due to flow interactions. Wings in a tandem pair select the same forward speed, which tends to be faster than a single wing, while maintaining a separation distance that is an integer multiple of the wavelength traced out by each body. When perturbed, these locomotors robustly return to the same arrangement, and direct hydrodynamic force measurements reveal springlike restoring forces that maintain group cohesion. We also use these data to construct an interaction potential, showing how the observed positions of the follower correspond to stable wells in an energy landscape. Flow visualization and vortex-based theoretical models reveal coherent interactions in which the follower surfs on the periodic wake left by the leader. These results indicate that, for the high-Reynolds-number flows characteristic of schools and flocks, collective locomotion at enhanced speed and in orderly formations can emerge from flow interactions alone. If true for larger groups, then the view of collectives as ordered states of matter may prove to be a useful analogy.
منابع مشابه
Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method
The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...
متن کاملFSI simulation of flexible tandem insect wings in counter stroke
Bionic micro-air vehicles (MAV) having the maneuverability of dragonflies would be capable of fast forward flight, hovering and even backward flight. In order to achieve desirable designs for high performing MAVs, it is essential to understand the aerodynamics and structures of the insect wings and more importantly, the interactions between the operating flows and flexible structural wings. Her...
متن کاملNUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS
Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...
متن کاملComparison of the Average Lift Coefficient CL and Normalized Lift ηL for Evaluating Hovering and Forward Flapping Flight
The capability of flapping wings to generate lift is currently evaluated by using the lift coefficient CL, a dimensionless number that is derived from the basal equation that calculates the steady-state lift coefficient CL for fixed wings. In contrast to its simple and direct application to fixed wings, the equation for CL requires prior knowledge of the flow field along the wing span, which re...
متن کاملDynamic aerodynamic-structural coupling numerical simulation on the flexible wing of a cicada based on ansys
Most biological flyers undergo orderly deformation in flight, and the deformations of wings lead to complex fluid-structure interactions. In this paper, an aerodynamic-structural coupling method of flapping wing is developed based on ANSYS to simulate the flapping of flexible wing. Firstly, a three-dimensional model of the cicada’s wing is established. Then, numerical simulation method of unste...
متن کامل